The unsurprising result here is that few-shot performance scales predictably with pre-training dataset size under traditional fine-tuning, matching network, and prototypical network approaches.
The interesting result is that the exponents of these three approaches were substantially different (see Table 1 in the paper), which says to me that the few-shot inference approach matters a lot.
The surprising result was that while more training on the “non-natural” Omniglot dataset did not improve few-shot accuracy on other datasets, training on “natural” datasets did improve accuracy on few-shot Omniglot.